If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+16x+3=0
a = 12; b = 16; c = +3;
Δ = b2-4ac
Δ = 162-4·12·3
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{7}}{2*12}=\frac{-16-4\sqrt{7}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{7}}{2*12}=\frac{-16+4\sqrt{7}}{24} $
| 2/5r+2=7 | | a+a=200 | | x(x)-40=300 | | -3x-38=x+10 | | 3.2+r=-6 | | 3x9 (6-5) = 6x+3 | | 3-13=n-6+16 | | 3x-11=-2x+19 | | -7(7-d)=7d-49 | | 3t+5÷8=-5 | | -14+9+y=-9+11 | | -1/4r+2=-10 | | 6y-5y+3=-7 | | 8x-7x-1=8 | | -32=m+5 | | 3(2x+3)=9x+7-3x+2 | | 6x+18-(2x-35)=1 | | (3x-39)=(2x+23) | | (x-16)^2=64 | | -2x+7=2x+1 | | −12=−17x+13 | | 2x+3-9=5 | | 37+x=8 | | .5(4z+.25=2(z+.0625) | | x(x)/2+6=38 | | 8(4-4)+r=-6(3+r) | | -29=5(y-5)-7y | | n+26=-46 | | 1/2z+10+3/4z=1/4z | | 9y+6y=12 | | -3x+7=7-2x | | y-36=-61 |